<<12345>>
11.

Let a, b, c and d be non-zero numbers. If the point of intersection of lines 4ax+2ay+c=0 and 5bx+2by+d=0 lies in the fourth quadrant and is equidistant from the two axes, then


A) 2bc-3ad=0

B) 2bc+3ad=0

C) 2ad-3bc=0

D) 3bc+2ad=0



12.

If PS  is the median of the triangle with vertices P(2,2), Q(6,-1). and R(7,3) then equation of the line passing through (1,-1) and parallel to PS is


A) 4x-7y-11=0

B) 2x+9y+7=0

C) 4x+7y+3=0

D) 2x-9y-11=0



13.

Let  the population of rabbits surviving at a time t be governed by the differential equation  $\frac{dp(t)}{dt}=\frac{1}{2}p(t)-200$.If  p(0)=100, then  p(t) is equal to 


A) $400-300e^{\frac{t}{2}}$

B) $300-200e^{\frac{t}{2}}$

C) $600-500e^{\frac{t}{2}}$

D) $400-300e^{\frac{t}{2}}$



14.

The area of the region described by $A= \left\{(X,Y):x^{2}+y^{2}\leq 1 \right\}    and   \left\{y^{2}\leq 1-x\right\}$ is


A) $\frac{\pi}{2}+\frac{4}{3}$

B) $\frac{\pi}{2}-\frac{4}{3}$

C) $\frac{\pi}{2}-\frac{2}{3}$

D) $\frac{\pi}{2}+\frac{2}{3}$



15.

 The integral   $\int_{0}^{\pi} \sqrt{1+4\sin^{2}\frac{x}{2}-4\sin\frac{x}{2}}dx$   is equal to 


A) $\pi-4$

B) $\frac{2\pi}{3}-4-4\sqrt{3}$

C) $4\sqrt{3}-4$

D) $4\sqrt{3}-4-\frac{\pi}{3}$



<<12345>>