Answer:
Option C
Explanation:
Let coordinate of the intersction point in fourth quadrant be $(\alpha,-\alpha)$
Since, $(\alpha,-\alpha)$ lies on both lines
4ax+2ay+c=0
and 5bx+2by+d=0
$\therefore$ $4a\alpha-2a\alpha+c=0$
$\Rightarrow$ $ \alpha=\frac{-c}{2a}$ ......(i)
and $5b\alpha-2b\alpha+d=0$
$\Rightarrow$ $\alpha=\frac{-d}{3b}$ .........(ii)
From eqs.(i) and (ii) , we get
$\frac{-c}{2a}=\frac{-d}{3b}$
$\Rightarrow $ 3bc=2ad
$\Rightarrow $ 2ad-3bc=0